Lorentz mapping of magnetic fields in hot dense plasmas.
نویسندگان
چکیده
Unique detection of electromagnetic fields and identification of field type and strength as a function of position were used to determine the nature of self-generated fields in a novel experiment with laser-generated plasma bubbles on two sides of a plastic foil. Field-induced deflections of monoenergetic 15-MeV probe protons passing through the two bubbles, measured quantitatively with proton radiography, were combined with Lorentz mapping to provide separate measurements of magnetic and electric fields. The result was absolute identification and measurement of a toroidal magnetic field around each bubble and determination that any electric field component parallel to the foil was below measurement uncertainties.
منابع مشابه
Three-dimensional MHD simulations of X-ray emitting subcluster plasmas in cluster of galaxies
Recent high resolution observations by the Chandra X-ray satellite revealed various substructures in hot X-ray emitting plasmas in cluster of galaxies. For example, Chandra revealed the existence of sharp discontinuities in the surface brightness at the leading edge of subclusters in merging clusters (e.g., Abell 3667), where the temperature drops sharply across the fronts. These sharp edges ar...
متن کاملHydrogen line formation in dense magnetized plasmas
The formation of hydrogen lines in dense plasmas in the presence of a uniform magnetic field is studied. The theory is developed for physical conditions (temperature, electronic density, magnetic field) characteristic of those encountered in the atmospheres of magnetic Ap and Bp stars. This is the first treatment of this problem dealing simultaneously with the Stark effect due to the electric m...
متن کاملDirect observation of turbulent magnetic fields in hot, dense laser produced plasmas.
Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred becau...
متن کاملبررسی شتابدهی ذرات باردار از طریق بازاتصالی مغناطیسی در محیطهای پلاسمایی
Magnetic reconnection, which occurs in high conducting plasmas, changes the topology of magnetic field lines and converts magnetic energy into the kinetic and thermal energy of plasma and also accelerates charged particles. This phenomenon plays an important role in changing the dynamic of laboratory and space plasmas such as fusion tokamaks and sun’s corona. The electric and magnetic fields ge...
متن کاملDissipative effect of thermal radiation loss in high-temperature dense plasmas
A dynamical model based on the two-fluid dynamical equations with energy generation and loss is obtained and used to investigate the self-generated magnetic fields in high-temperature dense plasmas such as the solar core. The self-generation of magnetic fields might be looked at as a selforganization-type behavior of stochastic thermal radiation fields, as expected for an open dissipative syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 103 8 شماره
صفحات -
تاریخ انتشار 2009